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Introduction

Enzyme-assisted extraction (EAE) is an A Greener and More Effective Approach
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yields of compounds like polyphenols, Figure 1: Enzyme-assisted extraction
carotenoids, flavonoids, and proteins

(Lubek-Nguyen et al., 2022; Puri et al., 2012). Compared to traditional techniques like
solvent-based or heat-assisted extraction, EAE operates under milder conditions,
requires less energy, and better preserves sensitive compounds, making it a more

sustainable alternative (Stambuk et al., 2016; Mattusch et al., 2006).

Enzymatic Mechanisms and Target Compounds

The success of EAE depends heavily on selecting enzymes that are specific to the
cell wall components of the plant matrix. Cellulases target cellulose, breaking it down
into simpler sugars, and are particularly effective for extracting flavonoids. For
example, cellulase derived from Penicillium decumbence improved the solubility and
extraction of flavonoids from Ginkgo biloba leaves due to its transglycosylation activity
(Chen et al., 2011). Pectinases, which act on pectic substances in the middle lamella,
have been used to enhance the recovery of phenolics from grape seeds (Stambuk et

al., 2016) and carotenoids from sunflower waste (Ricarte et al., 2020). Hemicellulases
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complement cellulases by degrading hemicellulose-rich areas of plant walls,
increasing the release of polyphenols, as seen in extractions from corn husks (Zuorro
etal., 2019). Proteases, on the other hand, catalyse the hydrolysis of protein matrices,
improving the extraction of oils and soluble proteins. In soybean flake extraction,
protease treatment increased oil recovery, with yields up to 15% higher compared to
untreated samples (Wu et al., 2009) whilst proteases were also effective for extracting
soluble fibres and protein fractions from fruit by-products (Fuso et al., 2022). Enzyme
blends made up of combinations of cellulolytic, pectinolytic, and hemicellulolytic
enzymes often achieve superior results compared to single-enzyme systems. One
example is the 70% increase in shea butter yield when using a blend of cellulolytic,
pectinolytic, and hemicellulolytic enzymes (Didia et al., 2018). EAE has been
successfully applied to various plant matrices, including grape skins (Tomaz et al.,
2016), guava peel (Amid et al., 2016), and tomato waste (Zuorro et al., 2011), for

recovering high-value compounds.

Optimization Parameters in EAE

EAE is influenced by several key parameters that must be carefully optimized to
achieve maximum yield and compound stability. One of the most critical factors is
enzyme dosage, as the enzyme-to-substrate ratio significantly affects extraction
performance. For instance, optimal doses of Lallzyme EX-V ranging from 10.52 to 20
mg/g were found to maximize flavonoid recovery from grape seeds and skins (Tomaz
et al., 2016; Stambuk et al., 2016). The pH and temperature conditions also play a
crucial role, as each enzyme exhibits peak activity within specific ranges. Pectinase
showed maximum activity at pH 3.5—4 and 30-35°C for flavonoid extraction (Fu et al.,
2008), while cellulase performed best at pH 5.0 and 55°C for protein extraction from
olive leaves (Vergara-Barberan et al., 2015). Reaction time further influences
outcomes, where extended incubation can enhance yields but may risk degrading
sensitive compounds. For example, the optimized EAE of lycopene from tomato waste
resulted in an 8-18 fold increase in recovery compared to untreated material (Zuorro
et al., 2011). Additionally, the use of enzyme combinations often yields better results
than single-enzyme systems, as mixed enzymes can degrade various cell wall

components simultaneously, as demonstrated in the phenolic extraction from rose
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petals using both pectinase and cellulase (Kalcheva-Karadzhova et al., 2014). To
refine these variables, experimental design strategies such as response surface

methodology (RSM) have been widely applied, enabling efficient process optimization

and cost-effective production.

Combination with Ultrasound-Assisted Extraction (UAE)

Combining EAE with UAE has
shown to significantly enhance
the disruption of plant cell walls
and improve enzyme-substrate
This

approach, known as ultrasound-

interactions. integrated
assisted enzymatic extraction
(UAEE), leverages the cavitation
effects generated by ultrasound
waves to physically break down
cellular structures, thereby
increasing enzyme accessibility

to target compounds. For
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instance, UAEE led to a notable Figure 2: Enzyme-ultrasound synergy

increase in triterpenoid yields

from Ganoderma lucidum compared to conventional extraction methods (Dat et al.,
2022). UAE has also proven effective for enzyme recovery, as demonstrated in the
extraction of pectinase from guava peel (Amid et al.,, 2016) and B-carotene from
orange processing waste (Shahram & Taghian Dinani, 2019). Under optimal
conditions, such as 50% acoustic power and 10 minutes of sonication, UAE preserved
enzyme activity while enhancing extraction efficiency (Amid et al., 2016). However,
excessive ultrasound exposure can compromise enzyme stability, necessitating
careful regulation of sonication time and intensity (Fazlena et al., 2013). When applied
carefully, the combination of EAE and UAE offers synergistic benefits, resulting in
higher yields and better preservation of bioactive compounds for nutraceutical and

pharmaceutical use.
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Applications and Benefits

EAE has demonstrated remarkable versatility and sustainability in the recovery of
valuable bioactive compounds from a wide range of plant materials. Phenolic
compounds extracted through EAE from winemaking by-products (de Camargo et al.,
2016) and rose petals (Kalcheva-Karadzhova et al.,, 2014) have shown strong
antioxidant activity, making them suitable for incorporation into functional foods.
Similarly, the extraction of carotenoids from sunflower waste (Ricarte et al., 2020) and
flavonoids from corn husks (Zuorro et al., 2019) has produced natural pigments
applicable in both the food and cosmetic industries. Furthermore, EAE has enhanced
the recovery of proteins from olive leaves (Vergara-Barberan et al., 2015) and
improved oil extraction from soybean flakes (Wu et al., 2009), supporting the
development of plant-based functional food products. Beyond its efficacy, EAE offers
notable environmental benefits by reducing the reliance on chemical solvents,
lowering energy consumption, and minimizing industrial waste, making it an attractive

method for industries pursuing sustainable production practices.

Limitations of EAE

While enzyme-assisted extraction (EAE) offers numerous advantages, several
limitations need to be addressed to enhance its industrial viability. One of the primary
concerns is the stability and specificity of enzymes under varying extraction conditions.
Enzymes such as cellulase and pectinase may denature when exposed to extreme
pH, temperature, or ionic strength, resulting in reduced catalytic efficiency
(Sowbhagya & Chitra, 2010). Moreover, regulatory requirements in food and
pharmaceutical industries impose strict safety and quality standards, necessitating
extensive testing and approval processes before enzymes can be used commercially
(Streimikyté et al., 2022). Industrial scalability also poses a challenge, as optimizing
enzyme concentrations and reaction parameters on a large scale can be technically
complex and cost intensive. Additionally, enzyme mixtures may create emulsions that
hinder downstream processing and purification (Wu et al., 2009). The high production
cost of commercial enzymes such as cellulase, pectinase, and protease further limits

the economic feasibility of EAE for some applications (Didia et al., 2018).
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Conclusion

Despite its limitations, EAE remains a highly promising, sustainable, and efficient
technique for recovering bioactive compounds from various plant-based materials. By
enabling targeted breakdown of plant cell wall components, EAE enhances extraction
yields while reducing reliance on harsh chemical solvents and excessive energy
inputs. The integration of EAE with complementary technologies, such as UAE, further
amplifies its efficiency and broadens its applicability across food, nutraceutical,
pharmaceutical, and cosmetic industries. As advancements in enzyme engineering
and process optimization continue, EAE is poised to play a pivotal role in developing
environmentally responsible and economically viable extraction methods that support

the transition toward greener industrial practices.
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