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Abstract

Ensuring the authenticity of meat products is a critical issue for consumer protection, regu-
latory compliance, and the integrity of local food systems. In this study, attenuated total
reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy combined with chemomet-
ric and machine learning models was applied to differentiate Maltese from non-Maltese
pork. Spectral datasets were subjected to a range of preprocessing techniques, including
Savitzky–Golay first and second derivatives, detrending, orthogonal signal correction
(OSC), and standard normal variate (SNV). Linear methods such as principal compo-
nent analysis–linear discriminant analysis (PCA-LDA), the soft independent modeling
of class analogy (SIMCA), and partial least squares regression (PLSR) were compared
against nonlinear approaches, namely support vector machine regression (SVMR) and
artificial neural networks (ANNs). The results revealed that derivative preprocessing con-
sistently enhanced spectral resolution and model robustness, with the fingerprint region
(1800–600 cm−1) yielding the highest discriminative power. While PCA-LDA, SIMCA, and
PLSR achieved high accuracy, SVMR and ANN models provided a superior predictive per-
formance, with accuracies exceeding 0.99 and lower misclassification rates under external
validation. These findings highlight the potential of FTIR spectroscopy combined with
nonlinear chemometrics as a rapid, non-destructive, and cost-effective strategy for meat
authentication, supporting both consumer safety and sustainable food supply chains.

Keywords: FTIR spectroscopy; pork authentication; chemometrics; PLSR; SVM; artificial
neural networks

1. Introduction
Global concerns regarding food fraud have intensified, particularly in the meat sector,

where issues such as species substitution, origin misrepresentation, and mislabeling of
halal or organic claims are increasingly reported [1,2]. Economically motivated adulteration
poses risks that extend beyond consumer deception, encompassing religious sensitivities,
nutritional misrepresentation, and even potential toxicological hazards. For example,
pork and its derivatives are considered haram in Muslim communities, making reliable
detection crucial for halal certification [3]. At the same time, adulteration undermines
local economies when high-value meats such as beef or indigenous pork are replaced with
cheaper alternatives.
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Traditional methods for meat authentication rely on DNA-based assays, such as a
polymerase chain reaction (PCR), and protein-based techniques like an enzyme-linked
immunosorbent assay (ELISA). While sensitive and specific, these techniques are often
hindered by high operational costs, a laborious sample preparation, and reduced applica-
bility to processed or thermally treated meat, where DNA and proteins may degrade [4].
These limitations have motivated the development of vibrational spectroscopic approaches,
particularly Fourier-transform infrared (FTIR) spectroscopy, as rapid, non-destructive,
and cost-efficient alternatives [5]. FTIR spectroscopy works by measuring the absorption
of infrared (IR) radiation by molecular bonds, producing characteristic spectral finger-
prints. Its operational range spans the near-infrared (14,000–4000 cm−1), mid-infrared
(4000–400 cm−1), and far-infrared (400–50 cm−1) regions, of which the mid-infrared (MIR)
region is most relevant for food authentication, since it contains the fundamental vibrational
frequencies of lipids, proteins, and nucleic acids [6,7]. Modern FTIR instruments utilize
interferometers, typically based on the Michelson design, which allow the multiplexing
of wavelengths and improve resolution and signal-to-noise ratios compared to dispersive
IR systems [8]. Importantly, the application of attenuated total reflectance (ATR)-FTIR has
simplified sample handling by allowing the direct measurement of intact or heterogeneous
samples without extensive preprocessing. Crystals such as diamond, ZnSe, or Ge facilitate
the penetration of IR radiation into the sample surface, enabling the analysis of soft tissues,
lipids, and protein-rich matrices [7].

In meat analysis, ATR-FTIR spectra commonly exhibit diagnostic peaks: 3000–2800 cm−1

(lipid CH stretching), ~1745 cm−1 (triglyceride carbonyls), 1650–1540 cm−1 (protein Amide
I and II bands), and 1200–1000 cm−1 (nucleic acids and phospholipids). The application of
chemometrics has significantly advanced the interpretability of FTIR spectra. Chemometrics
refers to the integration of mathematical and statistical tools into chemical analysis to extract
meaningful information from complex datasets [8]. Techniques such as principal component
analysis (PCA) and partial least squares (PLS) regression have been used to classify species,
identify adulterants, and even quantify adulteration levels in meat products. For example,
studies demonstrated that ATR-FTIR combined with PLS regression achieved correlation
coefficients (R2) greater than 0.99 in quantifying lard in butter and differentiating beef sausages
adulterated with pork fat [9,10]. Other approaches such as PLS-DA, SIMCA, and support
vector machines (SVM) have further enhanced the classification accuracy in multi-class meat
authentication problems, sometimes reaching accuracies above 98% [11]. Internationally, the
use of ATR-FTIR combined with chemometrics has extended beyond meat to fats, oils, dairy,
and functional foods. A comprehensive review of over two decades of studies revealed that
edible fats and oils were among the most adulterated food categories, with FTIR emerging as
one of the most reliable fingerprinting tools when coupled with multivariate analysis [12]. In
meat applications, FTIR has been applied for detecting pork adulteration in beef meatballs,
lamb sausages, and mixed minced meats, with detection limits often as low as a 1–2%
substitution [13,14]. Importantly, portable ATR-FTIR and diffuse reflectance (DR)-FTIR devices
have recently been evaluated for on-site authenticity testing, achieving classification accuracies
of up to 100% when coupled with SVM models [15].

In Malta, the case of pork authentication carries unique socio-economic and cultural
significance. Historically, pork was a dietary staple, and its supply was severely disrupted
during outbreaks of African Swine Fever. Although the sector has since recovered, a
new challenge has emerged: competition from imported pork products that are often
cheaper but of a lower quality. Current slaughter rates in Malta stand at approximately
1600 pigs per week, a sharp decline from 2400 in recent years, despite consumption levels
remaining constant [16]. The shortfall has been filled by imports, raising concerns about
both the quality and authenticity. For a small island nation, where pork holds cultural
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value and represents a critical component of local agriculture, the risks of adulteration—
whether through species substitution, origin misrepresentation, or false labelling, have
significant economic and consumer trust implications. Finally, although the European
Pharmacopoeia has begun incorporating chemometric methods into analytical chapters,
their routine adoption in European food industries remains limited [17]. This highlights a
gap between methodological innovation and industrial practice. Addressing this gap in
the Maltese context through the integration of ATR-FTIR with chemometrics can provide
a rapid, non-destructive, and cost-effective solution for pork authentication. The present
study, therefore, seeks to pioneer the application of these methods to Maltese pork, ensuring
authenticity, strengthening regulatory oversight, and reinforcing consumer confidence in
local meat production.

2. Materials and Methods
2.1. Pork Samples and Preparation

A total of 116 Maltese pork samples consisting of both loin and belly were directly
sampled from KIM (Koperattiva Industijali tal-Majjal, Marsa, Malta). Samples were trans-
ported under chilled conditions (4 ◦C) to the laboratory to prevent degradation prior to
analysis. Samples were then stored in a freezer at −15 ◦C before analysis. With respect to
foreign pork samples, a total of 53 samples consisting of the loin and belly were sampled
and stored at −15 ◦C before analysis. Before laboratory analysis, both local and foreign
pork samples were freeze-dried (BioBase, BK-FD10PT, Jinan, China) for 3 days at −68 ◦C.
After freeze-drying, visible skin, fat, and connective tissue were excised that could interfere
in the analysis, and then about 100 g of meat was homogenized and ground in a ratio of 1:1
with dry ice as it minimizes unwanted heat generation due to friction.

2.2. ATR-FTIR Measurement

ATR-FTIR measurements were performed using an IRAffinity-1 Shimadzu spectrom-
eter equipped with an attenuated total reflectance (ATR) accessory (Shimadzu, Kyoto,
Japan). The instrument was switched on and allowed to stabilize for 30 min prior to anal-
ysis. A background spectrum was first acquired (45 scans), followed by measurement of
the validation disk (45 scans) to confirm instrument stability and performance. Before each
analysis, the ATR crystal surface was thoroughly cleaned with isopropyl alcohol (Biochem
Chemopharma, Cosne-Cours-sur-Loire, France) and dried to prevent cross-contamination.
Samples were then placed in firm contact with the ATR crystal to ensure optimal pene-
tration of IR radiation. For each sample, spectra were recorded over the 400–5000 cm−1

wavenumber range at a resolution of 2 cm−1, with 45 co-added scans to improve the
signal-to-noise ratio. To account for sample heterogeneity and improve reproducibility,
three replicate spectra were collected per sample, with the sample being removed and
repositioned on the crystal between replicates. After each measurement, the ATR surface
was re-cleaned with isopropyl alcohol, dried before proceeding to the next sample, and a
background scan was completed between different samples. To minimize spectral distor-
tion, wavenumber regions associated with atmospheric CO2 (2390–2250 cm−1) and water
vapor (3400–3200 cm−1) were excluded from further analysis. Two spectral datasets were
prepared for chemometric analysis: Fingerprint region (1800–600 cm−1)—selected for its
high specificity to functional group vibrations of proteins, lipids, and nucleic acids. Full
mid-infrared (MIR) region (4000–500 cm−1) included broad spectral information while
excluding CO2 and possible water interference zones.
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2.3. Data Treatment

Raw FTIR spectra are inherently complex, containing overlapping peaks, baseline
drifts, and scattering effects that can mask subtle chemical differences between meat
samples. In order to optimize the discriminatory power of the spectroscopic dataset, a
comprehensive suite of eleven spectral pre-processing transformations was systematically
applied prior to chemometric modeling. These transformations were implemented in Un-
scrambler X (Camo Analytics, Mölndal, Sweden), following approaches widely reported in
FTIR–chemometric applications for meat and edible fats [18,19]. The applied pre-processing
methods included the following: Savitzky–Golay first derivative (SG 1st der.) enhances
spectral resolution and minimizes baseline offsets by calculating the first derivative of
absorbance values with a polynomial fitting algorithm. Savitzky–Golay second derivative
(SG 2nd der.) emphasizes subtle differences in overlapping bands and improves peak reso-
lution, particularly within the protein Amide I and II regions [11]. Dersolve (derivative with
smoothing) combines differentiation with noise filtering, balancing detail enhancement
with signal stability. Detrend correction removes linear baseline shifts and compensates for
scattering effects caused by surface irregularities. Median filter smoothing (5 point) reduces
high-frequency noise by replacing each spectral point with the median of its neighbors.
Multiplicative Scatter Correction (MSC) corrects multiplicative and additive light scattering
variations due to heterogeneous particle sizes and pathlength differences. Orthogonal Sig-
nal Correction (OSC) removes spectral variance unrelated to the dependent variable (class
membership), improving model robustness [12]. Quantile normalization was also carried
out to standardize intensity distributions across spectra, improving comparability. Raw
spectra (no treatment) were included as a baseline reference and ATR correction was used to
evaluate the added value of pre-processing. Standard Normal Variate (SNV) corrected for
scatter and pathlength differences by scaling each spectrum individually. SNV + Detrend
combined both SNV scaling and baseline correction to improve reproducibility.

Each pre-processed dataset was structured into a data matrix

X = n × p (1)

where n corresponds to the number of samples (Maltese and foreign pork replicates)
after averaging signal from the three independent replicates and p represents the number
of spectral variables (wavenumber points). Supervised and unsupervised chemometric
methods were carried in Python 3.11 (Python Software Foundation, Wilmington, DE, USA)
using the scikit-learn machine learning library, along with NumPy, pandas, and Matplotlib
(version 3.7.2) for data processing and visualization.

2.4. Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique which is
used to transform high-dimensional data into a lower-dimensional space while preserving
the variance in the dataset. PCA is useful as it deals with large datasets with thousands of
variables in common. PCA works by finding new axes that maximize variance in the data,
involving computing the eigenvalues and eigenvectors of the covariance matrix [20]. The
mathematical equation of PCA is shown in equation

X = TPT + E (2)

in which X represents the original data matrix with n observations and p variables, T
represents the score matrix in terms of principal components (PCs), P represents the loading
matrix containing the eigenvectors that define how the original variables contribute to each
principal component, and E represents the residual matrix capturing unexplained variance
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or noise after projection [20]. In this research, PCA was used to explain the variance within
the ATR-FTIR dataset and to visualize clustering trends in relation to pork origin. The
extracted PCA scores provided a summary of the sample grouping based on origin, while
the PCA loadings provided an insight into the variability of spectral features contributing
to differences within the pork profile. Outlier Detection was carried out using two statistical
tests: Hotelling’s T2 statistic, which measures the leverage of sample i in the score space:

T2
i = ti

T St
−1 ti (3)

where ti is the score vector of sample i and St is the covariance matrix of the scores, and
Q-residuals (Squared Prediction Error), which quantify the variance not captured by the
PCA model:

Qi = ∥xi − x̂i∥2 (4)

where xi is the original spectrum and x̂i = ti PT is the PCA reconstruction. Samples exceeding
the empirical threshold (mean + three standard deviations of the distribution) for either
statistic were flagged as outliers and excluded from subsequent classification steps.

2.5. The Soft Independent Modeling of Class Analogy (SIMCA)

The Soft Independent Modeling of Class Analogy (SIMCA) algorithm was utilized
as a supervised classification method for the spectral datasets. In SIMCA, distinct PCA
models are created independently for each predefined class, allowing for the modeling
of within-class variance while preserving class-specific structure. Unknown samples are
then projected into each class model and their class membership is assessed by calculating
the residual distances between the original spectrum and its PCA reconstruction. The
validation of the SIMCA models, along with all other supervised models, was performed
using three approaches. Training accuracy is determined by the classification of samples
within the calibration set. Leave-One-Out (LOO) cross-validation involves excluding each
sample one at a time and reclassifying it using models developed from the remaining data.
Excluded-row validation, also known as Venetian blind cross validation, systematically
omits every 3rd sample from training and classifies it independently. Each unknown
spectrum was classified into the class with the lowest residual distance:

ŷi = arg mink dk,i (5)

where dk,i is the residual distance of sample i to class model k. For two-class comparisons,
Coomans plots were constructed to visualize sample positions relative to both class models,
providing a graphical overview of membership, ambiguous cases, and potential outliers.
The SIMCA performance was assessed using different parameters, namely accuracy, defined
as the proportion of correctly classified samples relative to the total number of samples:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

where TP = true positives, TN = true negatives, FP = false positives, and FN = false
negatives.

Specificity ability of the model to correctly identify negative samples (i.e., correctly
rejecting samples from the other class):

Specificity =
TN

TN + FP
(7)
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Selectivity, known as sensitivity, is defined as the ability of the model to correctly
identify positive samples (i.e., correctly accepting samples belonging to the target class):

Selectivity =
TP

TP + FN
(8)

2.6. Multivariate Classification Using PCA-LDA and PLS-LDA

To investigate the discriminatory power of the spectral data and assess sample classi-
fication based on origin, two hybrid chemometric workflows were employed: Principal
Component Analysis coupled with Linear Discriminant Analysis (PCA-LDA) and Partial
Least Squares Regression coupled with Linear Discriminant Analysis (PLS-LDA). Both
approaches combined dimensionality reduction with supervised classification, optimizing
interpretability while minimizing model overfitting. All absorbance values were standard-
ized using z-score normalization (mean-centered and scaled to unit variance) via Standard
Scaler from scikit-learn, ensuring comparability across wavenumber intensities.

In the PCA-LDA, dimensionality reduction was first achieved by PCA. PCA was
performed on the standardized spectral matrix, retaining a maximum of 10 principal
components (PCs) or fewer, depending on dataset constraints. The selected PCs, which
captured the majority of spectral variance, were then used as input features in Linear
Discriminant Analysis (LDA). LDA is a supervised classification algorithm that seeks to
maximize between-class variance while minimizing within-class variance in the trans-
formed space. LDA was implemented using the Linear Discriminant Analysis class from
scikit-learn and applied to the PCA scores. The resulting canonical scores were plotted to
visualize class separation and classification performance was evaluated.

For the PLS-LDA approach, Partial Least Squares analysis (PLS) was first used to
reduce data dimensionality by projecting the spectral matrix onto a new set of orthogonal
latent variables (LVs) that are maximally correlated with the class labels (encoded as binary
integers: 0 = non-Maltese, 1 = Maltese). A maximum of 10 LVs or fewer were extracted
using the PLSRegression class from scikit-learn. The resulting PLS scores (X-scores) served
as input features for LDA, implemented in the same manner as the PCA-LDA model. This
approach leveraged both the variance in the spectral dataset and its covariance with class
membership, potentially offering greater classification power when relevant discriminatory
information is subtly embedded in the data structure. Confusion matrices were generated
for training predictions and canonical score plots (LD1 vs. LD2) were produced to visualize
class separation. Both loading plots and latent variable scores were also exported to aid
interpretation of discriminant features. Model outputs and performance metrics were saved
for both whole-spectrum and fingerprint-only preprocessing strategies for comparison
purposes. The performance of the PCA-LDA and PLS-LDA classification models was
assessed using three complementary validation approaches.

2.6.1. Training Accuracy (Apparent Accuracy)

This metric quantifies the proportion of correctly classified samples within the calibra-
tion dataset used to train the model. While informative, it may overestimate performance
due to overfitting, particularly in high-dimensional datasets with limited samples.

AccuracyTrain =
Total training samples

Number of correct predictions
× 100 (9)

2.6.2. Leave-One-Out Cross-Validation (LOO-CV)

LOO-CV is a robust internal validation method where each sample is iteratively
excluded from model training and used for testing. This approach reduces bias and
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provides more realistic estimate of the model’s predictive ability on unseen data. It is
particularly suitable when the dataset is small, as it maximizes training size in each fold.

AccuracyLOO = ∑n
i=1

δ
(
yi, yLOO, i

)
n

× 100

where δ(a, b) =

{
1 if a = b
0 if a ̸= b

(10)

Here, yi is the true class label of the ith sample and yLOOi is the predicted class label
obtained when the ith sample was excluded from model training.

2.6.3. Excluded Sample Accuracy (Structured Venetian Blind Validation)

In addition to leave-one-out (LOO) cross-validation, a Venetian blinds approach was
employed for excluded-sample validation, as this strategy leaves out systematic blocks
of spectra rather than single observations, thereby providing a more realistic estimate of
prediction error and reducing the tendency of LOO to overestimate error in small samples.
In this study, every third sample in the dataset was systematically excluded prior to model
training and used solely for model evaluation. This form of stratified sampling ensures that
each excluded observation is not adjacent or strongly correlated to those used for training,
thereby mimicking an external validation set and avoiding overly optimistic estimates
caused by temporal or batch autocorrelation. Specifically, 33% of the samples (every 3rd
entry) were withheld and not used during model training. The remaining 67% formed the
training set and were used to build the PCA-LDA and PLS-LDA models. Predictions were
then generated for the excluded subset and classification accuracy was computed based on
the proportion of correctly predicted labels:

AccuracyExcluded =
Correct predictions on Venetian blind excluded samples

Total excluded samples
× 100 (11)

2.7. Partial Least Squares Regression (PLSR)

Partial Least Squares Regression (PLSR) was performed using the PLSRegression class
from the scikit-learn sklearn.cross_decomposition module. Although the response variable
in this study is non-continuous, PLSR was applied to evaluate the variability in classification
performance across different spectral transformations and regions by calculating the root
mean square error (RMSE). The maximum number of latent variables (LVs) was defined
as the minimum between n − 1 (where n is the number of samples) and the number of
spectral variables. The optimal number of LVs was selected by minimizing the RMSE
obtained from Leave-One-Out (LOO) cross-validation. RMSE values were computed for
both the training set and the LOO validation set to assess model performance and reduce
the risk of overfitting. In this framework, the binary class response was modeled as a
continuous variable rather than a discrete categorical outcome. Class labels were encoded
as dummy variables, assigning a value of 1 to Maltese samples and 0 to foreign samples.
Predicted values generated by the PLSR model were interpreted probabilistically: samples
with predicted values >0.5 were classified as foreign, while those ≤0.5 were classified
as Maltese.

Regression coefficients for each wavenumber were extracted from the PLSR model
using the optimal number of LVs. Additionally, Variable Importance in Projection (VIP)
scores were calculated to assess the relative contribution of each spectral variable to the
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model. VIP scores were computed following the approach of Wold et al. (2001) [21] using
the formula:

VIPj =

√√√√
p·

∑A
a=1

(
w2

j,a·sa

)
∑A

a=1 sa
(12)

where p is the number of variables, wj,a is the weight of variable j on LV a, Sa is the amount
of variance in y explained by LV a, and A is the number of LVs retained.

PLSR score plots were used to visualize class separation in latent variable space, with
samples color-coded by origin (red = foreign, black = Maltese). Regression coefficients and
VIP scores were plotted against the original wavenumber axis for interpretability. Model
performance was evaluated using the Root Mean Squared Error (RMSE)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (13)

where yi is the reference class label (0 for foreign, 1 for Maltese), ŷi is the corresponding
predicted value (continuous output from the PLSR model), and n is the total number of
samples evaluated. RMSE was computed for the training set, leave-one-out cross-validation
(LOOCV), and excluded rows validation (ERV) to evaluate the accuracy and robustness of
the model under different validation strategies.

2.8. Support Vector Machine Regression (SVMR) Modeling

Support Vector Machine Regression (SVMR) was implemented using a radial basis
function (RBF) kernel via the scikit-learn library. Similar to PLSR, the response was modeled
as a continuous variable rather than a discrete categorical outcome. Model hyperparameters
were optimized through an exhaustive grid search combined with five-fold cross-validation,
using the coefficient of determination (R2) as the selection criterion. The hyperparameter
space explored included C (regularization parameter): {0.1, 1, 10, 100}; ε (insensitive loss):
{0.01, 0.1, 0.5, 1.0}; and γ (kernel coefficient): {‘scale’, ‘auto’}. Model performance was
evaluated using the RMSE and coefficient of determination (R2) for the training set using
leave-one-out cross-validation (LOOCV) and excluded rows validation. To interpret the
relative contribution of spectral variables to the SVMR model, permutation importance
analysis was performed using 10 randomized repetitions. The top 30 most informative
wavenumbers were ranked based on their mean importance scores and visualized for
biochemical interpretation.

2.9. Artificial Neural Network (ANN) Modeling

A supervised feed-forward Artificial Neural Network (ANN) was employed to classify
the geographical origin of the FTIR spectra. The ANN was implemented as a multilayer
perceptron (MLP) with rectified linear unit (ReLU) activation functions and optimized using
the Adam algorithm hidden layer configurations including single-layer networks with 50
and 100 nodes, two-layer networks (50–20, 100–50), and a three-layer network (50–30–10)
combined with maximum iteration limits of 1000, 2000, and 3000. Early stopping based on
validation loss was applied in all models to prevent overfitting and reduce computational
cost. Classification performance was assessed using accuracy, precision, recall, specificity,
F1-score, misclassification rate, cross-entropy loss, and the area under the receiver operating
characteristic curve (AUC).
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3. Results
3.1. Spectral Assignments, Peak Identification, and Difference Between Classes

A representative spectrum obtained from the two categories of meat (Maltese versus
foreign pork) is shown in Figure 1 and Table 1. The spectra obtained under different
transformations can be found in the Supplementary Material Figure S1.

Figure 1. Overlay of ATR-FTIR spectra of Maltese (black) and non-Maltese (red) pork. Characteristic
peaks (a–n) are assigned to lipid, protein, ester, and carbohydrate vibrational modes. Major differences
are observed in the lipid region (2925, 2853, and 1745 cm−1), which is more intense, and in protein
bands (1655, 1540, and 1315–1230 cm−1), which are stronger in Maltese samples, reflecting higher
relative protein content. Gray areas show the excluded regions from model building.

Table 1. Comparative ATR-FTIR spectra of Maltese (black) and foreign (red) pork, showing peak
assignments (a–n) and relative intensity differences linked to lipids, proteins, and carbohydrates.

Peak Description/Band
Assignment

Functional
Group/Bond Wavenumber (cm−1) Intensity Trend Sample Origin Difference

a Broad band
O–H/N–H stretch
(water, proteins,
lipids)

~3270–3300
Medium in both,
slightly higher in
foreign

Foreign pork shows slightly
stronger water/protein
broadening

b Sharp band C–H stretch (asym.
CH2/CH3, lipids) ~2955 Strong, higher in

Maltese

Maltese pork shows more
pronounced lipid CH2/CH3
vibrations

c Sharp band C–H stretch (sym.
CH2 lipids) ~2920 Strong in both Comparable, but Maltese

marginally stronger

d Shoulder band C–H stretch (sym.
CH3, alkanes) ~2850 Medium, higher in

Maltese

Indicates higher
lipid/methylenic content in
Maltese pork

e Strong band C=O stretch (Amide I,
proteins) ~1650 Very strong in both No major difference—protein

backbone vibration

f Medium band
Amide II (N–H bend
and C–N stretch,
proteins)

~1540 Medium, higher in
Maltese

Maltese samples have
stronger amide II band
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Table 1. Cont.

Peak Description/Band
Assignment

Functional
Group/Bond Wavenumber (cm−1) Intensity Trend Sample Origin Difference

g Shoulder Amide III (C–N, N–H
bend, proteins) ~1450 Weak–Medium Slightly stronger in foreign

samples

h Sharp band CH2 scissoring
(lipids) ~1400 Medium, higher in

Maltese Suggests higher lipid content

i Weak band COO− sym. stretch
(fatty acids) ~1330 Weak in both No clear origin difference

j Medium band Amide III/C–N
stretch (proteins) ~1240 Medium, slightly

higher in foreign

Foreign pork shows stronger
protein secondary structure
vibration

k Medium band
P=O stretch
(phospholipids,
nucleic acids)

~1080 Medium, slightly
higher in Maltese

Maltese has stronger
phospholipid features

l Shoulder
C–O stretch
(carbohydrates,
collagen)

~1030 Weak–Medium,
higher in foreign

Foreign pork shows stronger
polysaccharide/collagen
bands

m Sharp band
C–O–C stretch
(polysaccharides,
lipids)

~970 Weak in both Subtle, foreign slightly higher

n Fingerprint
vibration

C–H out-of-plane
bend (aromatics) ~920 Weak, stronger in

foreign
Foreign pork richer in
aromatic vibrations

The grey-out regions present in Figure 1 represent the regions which were excluded
from the analysis, which included the O-H and N-H region, CO2 region, and the last part of
the fingerprint region. Overall, the spectra obtained exhibit notable similarities within the
overall MIR region (4000–650 cm−1); however, several distinct differences can be identified:
The O-H and N-H region (a) due to Amide A (the N–H stretching of proteins, with a con-
tribution from the O–H stretching of polysaccharides). The lipid region (3000–2800 cm−1)
(b,c,d)—prominent CH2 asymmetric (~2925 cm−1) and symmetric (~2854 cm−1) stretching,
in addition to CH3 asymmetric (~2956–2960 cm−1) bands. Variations in the intensity are
evident between the classes, reflecting differences in the intramuscular fat composition and
saturation levels. The carbonyl/ester region (1745–1740 cm−1) (f)—a clear ester C=O stretch-
ing band, primarily derived from triglycerides and phospholipids. Intensity variations
indicate class-specific differences in the lipid ester content. The protein (Amide I and II)
region (1700–1500 cm−1) (g,h)—Amide I (~1655 cm−1; the C=O stretching of peptide bonds)
and Amide II (~1540 cm−1; N–H bending and C–N stretching). Both bands are present
across all classes, but differ in their relative intensity, suggesting variations in the protein
secondary structure profile (α-helix versus β-sheet composition). The fingerprint region
(1500–900 cm−1) (i,j,k,l,m,n)—CH2 bending (~1465 cm−1) and CH3 bending (~1377 cm−1).
Phosphate vibrations (~1240–1230 cm−1; associated with nucleic acids/phospholipids).
C–O stretching vibrations (1200–1000 cm−1) from carbohydrates, glycogen, and phospho-
lipids. Subtle yet consistent differences between the classes are observed, particularly
around 1240 cm−1 and 1080 cm−1, which are frequently noted as discriminant regions in
studies of pork authenticity [3,9].

3.2. Principle Component Analysis

The Principal Component Analysis (PCA) of the ATR-FTIR spectra revealed clear clus-
tering trends between Maltese and non-Maltese pork samples. Using the whole spectral
range (4000–650 cm−1), Maltese samples grouped apart from non-Maltese, though with
some overlap (Figure 2a). Restricting the analysis to the fingerprint region (1800–850 cm−1)
improved the separation, indicating that biochemical signatures within this range pro-
vide greater discriminatory power (Figure 2b). The examination of the PCA loadings
(Figure 2c,d) highlighted the spectral variables most responsible for class differentiation,
including protein-associated Amide I and II bands (1700–1500 cm−1), lipid CH2 and CH3
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stretching/bending modes (3000–2800 and ~1460 cm−1), and carbohydrate/phosphate-
related vibrations (1200–900 cm−1). These regions have previously been reported [7,10] as
key markers for meat authentication, where lipid carbonyl (~1745 cm−1) and amide absorp-
tions are particularly sensitive to the species origin and processing [3,4,9]. The stronger
discriminatory power of the fingerprint region is consistent with earlier studies, showing
that multivariate models based on the 1800–900 cm−1 yield enhanced the classification of
pork, beef, and poultry products. Overall, the separation observed here reflects underly-
ing biochemical differences in muscle protein secondary structures and lipid distribution
between Maltese and non-Maltese pork, in agreement with published FTIR–chemometric
studies on meat speciation. Full PCA results for all preprocessing transformations are
provided in the Supplementary Information (Figures S2–S5).

Figure 2. PCA of ATR-FTIR spectra for Maltese (black) and non-Maltese (red) pork. Score plots based
on the whole spectrum (a) and the fingerprint region (b) show clustering between groups, while
corresponding loadings (c,d) highlight key discriminatory bands in proteins, lipids, and carbohy-
drates. Full PCA results for all preprocessing transformations are provided in the Supplementary
Information (Figures S2–S5).
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Table 2 shows the proportion of variance explained by the first two components (PC1
and PC2) which varied considerably depending on the transformation. For the finger-
print region, the 2nd Savitzky–Golay derivative yielded the highest explained variance
(PC1 = 95.5%, PC2 = 1.7%), followed by the 1st derivative (PC1 = 89.1%, PC2 = 3.3%). Other
transformations such as Deresolve, the Median filter, and Raw spectra explained moderate
variance (PC1 ~66%), whereas Detrend, MSC, SNV, and Quantile normalization performed
less strongly (PC1 = 53–56%).

Table 2. Explained variation (%) of the first two principal components (PC1 and PC2) for different spec-
tral pre-processing methods applied to ATR-FTIR spectra of pork (whole spectrum: 4000–650 cm−1;
fingerprint region: 1800–850 cm−1), sorted by PC1 Fingerprint.

Pre-Processing
Method PC1 Whole (%) PC2 Whole (%) PC1 Fingerprint

(%)
PC2 Fingerprint

(%)

2nd SG derivative 92.4 3.5 95.5 1.7
1st SG derivative 79.4 10.1 89.1 3.3

Deresolve 63.1 22.0 66.8 20.7
Median filter 62.8 22.3 66.5 24.1
Raw spectra 62.9 21.9 66.5 20.6

OSC 64.5 16.4 59.1 13.6
SNV + Detrend 57.7 29.1 57.4 23.6

SNV 57.7 28.7 54.9 23.8
MSC 63.1 25.3 55.2 23.1

Detrend 48.6 32.3 55.6 28.1
Quantile normalization 55.6 28.4 53.2 25.0

A similar pattern was observed for the whole spectrum, where the 2nd derivative
again explained the highest variance (PC1 = 92.4%) although lower than the fingerprint.
These results confirm that derivative-based preprocessing coupled with the use of the
fingerprint region maximizes the discriminatory information in the pork FTIR spectra,
particularly within the fingerprint region, where subtle biochemical differences between
Maltese and non-Maltese samples were best captured.

3.3. The Soft Independent Modeling of Class Analogy (SIMCA)

The SIMCA classification models shown in Table 3 demonstrated a consistently high
performance across both whole and fingerprint spectral regions. In the whole spectrum,
several preprocessing methods including Deresolve, Detrend, OSC, Raw, Median Filter,
and Quantile Normalization achieved 100% excluded sample accuracy, with Deresolve
emerging as the most efficient transformation given the lowest number of outliers (n = 5).
Similarly, the fingerprint spectra produced excellent results, with the 2nd derivative achiev-
ing perfect classification (100%), although at the cost of seven removed outliers. Outlier
analysis using Hotelling’s T2 plots and Q residuals can be found in Supplementary Material
Figures S6 and S7. Detrend provided a more balanced outcome, with a high excluded
accuracy (98.2%) and the lowest outlier count (n = 4). Overall, while both spectral ranges
yielded strong discrimination between Maltese and foreign pork, the whole spectrum of-
fered more routes to perfect classification, whereas the fingerprint region, although slightly
less robust, highlighted the discriminative power of derivative-based preprocessing. A
representative analysis of the specificity, selectivity, and accuracy can be found in Table 3
and is visualized in Figure S9.

The representative Coomans plots illustrated in Figure 3 and Figure S8 show the
discriminatory performance of SIMCA models for Maltese and foreign pork samples. In the
whole spectrum with Deresolve preprocessing (left), a clear separation is observed, with the
majority of samples correctly clustered within their respective class boundaries and only a
few outliers detected. The fingerprint spectrum with 2nd-derivative preprocessing (right)
further enhanced the resolution between classes, as indicated by the sharper distinction
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between Maltese (red) and foreign (blue) samples, although a slightly higher sensitivity
to outliers was noted. These results confirm that both preprocessing strategies provided
effective class modeling, with the fingerprint region offering the improved interpretability
of biochemical variation despite increased outlier sensitivity.

Table 3. SIMCA classification performance.

(a) Whole Spectrum

Pre-Processing Method Training
Accuracy Specificity Selectivity LOO Accuracy Excluded

Accuracy
Outliers

Removed

1st Derivative 0.963 0.946 1.000 0.951 0.889 6
2nd Derivative 0.970 0.964 0.981 0.927 0.796 6

Deresolve 1.000 1.000 1.000 1.000 1.000 5
Detrend 1.000 1.000 1.000 1.000 1.000 7

Median Filter 0.994 0.991 1.000 0.988 1.000 6
MSC 0.982 0.973 1.000 0.982 0.926 6
OSC 1.000 1.000 1.000 1.000 1.000 8

Quantile Norm. 0.981 0.973 1.000 0.957 1.000 8
Raw 1.000 1.000 1.000 1.000 1.000 6
SNV 0.988 0.982 1.000 0.970 0.963 6

SNV + Detrend 0.988 0.982 1.000 0.982 0.944 6

(b) Fingerprint spectrum

Pre-processing Method Training
Accuracy Specificity Selectivity LOO Accuracy Excluded

Accuracy
Outliers

Removed

1st Derivative 0.970 0.955 1.000 0.957 0.981 6
2nd Derivative 1.000 1.000 1.000 1.000 1.000 7

Deresolve 0.994 0.991 1.000 0.982 0.964 5
Detrend 0.994 0.991 1.000 0.976 0.982 4

Median Filter 0.994 0.991 1.000 0.982 0.964 5
MSC 0.939 0.911 1.000 0.939 0.926 6
OSC 0.994 0.991 1.000 0.970 0.982 5

Quantile Norm. 0.927 0.893 1.000 0.896 0.944 6
Raw 0.994 0.991 1.000 0.982 0.964 5
SNV 0.927 0.893 1.000 0.927 0.944 6

SNV + Detrend 0.939 0.910 1.000 0.933 0.963 7

   

Figure 3. Coomans plots of SIMCA classification models. (Left) Whole spectrum after Deresolve
preprocessing, showing the separation between Maltese (red) and foreign pork samples (blue). (Right)
Fingerprint spectrum after 2nd derivative preprocessing, illustrating improved class separation with
minimal overlap between classes.
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3.4. Multivariate Classification Using PCA-LDA and PLS-LDA

The classification performances of the PCA-LDA and PLS-LDA models for pork
authentication using FTIR spectral data are summarized and visualized in Figure 4, Figure 5,
and Figure S10. Across all preprocessing methods, PLS-LDA achieved perfect accuracies
(100%) for both the whole spectra and fingerprint regions, regardless of training, leave-
one-out (LOO), or excluded validation sets. In contrast, PCA-LDA yielded slightly lower
accuracies depending on the preprocessing method. For example, quantile normalization
reduced the PCA-LDA performance (whole: 91.7% training, 89.3% LOO, 89.3% excluded),
whereas first and second derivatives improved the classification (≥98% across all datasets).
SNV and detrending combinations also maintained accuracies above 94%. These results
highlight that PLS-LDA consistently outperformed PCA-LDA in terms of their robustness,
particularly when dealing with excluded validation samples.

Figure 4. Heatmap visualization of classification accuracies for PCA-LDA and PLS-LDA models applied
to whole and fingerprint FTIR spectra of pork samples under different preprocessing methods. Each
cell represents the classification accuracy for training, leave-one-out (LOO), or excluded validation sets.
Darker shades indicate lower accuracies, while yellow regions indicate perfect classification (100%).

The classification scores plots (Figure 5) demonstrate the separation achieved by
PCA-LDA and PLS-LDA using second-derivative spectral preprocessing. For the whole
spectral range, PCA-LDA showed a partial overlap between Maltese (black) and non-
Maltese (red) pork samples, whereas PLS-LDA achieved clearer class separation along the
first two latent variables. A similar trend was observed in the fingerprint region, where
PLS-LDA provided a more distinct clustering pattern compared to PCA-LDA, confirming
its superior discriminatory power.

3.5. Partial Least Squares Regression (PLSR)

Partial Least Squares Regression (PLSR) analysis was conducted on both the whole
FTIR spectra and the fingerprint region across a range of preprocessing methods (Table 4).
The results demonstrated a strong predictive performance with coefficients of determi-
nation (R2) exceeding 0.95 for most transformations. Among the whole-spectrum mod-
els, the 1st derivative (R2 = 0.993, RMSE Train = 0.039) and 2nd derivative (R2 = 0.988,
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RMSE Train = 0.050) exhibited the highest calibration performance with relatively low
excluded-sample error values (0.081 and 0.076, respectively). For the fingerprint region,
the 2nd derivative achieved the strongest performance (R2 = 0.996, RMSE Train = 0.029),
indicating that this spectral domain captured the most discriminative information. Con-
versely, quantile normalization and SNV + Detrend produced lower R2 values (<0.90 in
the whole spectra), reflecting a weaker predictive capacity compared to derivative and
smoothing-based approaches. Overall, derivative preprocessing methods (1st and 2nd
derivative) consistently enhanced the calibration accuracy and model robustness across
both spectral ranges.

   

   

Figure 5. Representative classification score plots comparing PCA-LDA and PLS-LDA models for
pork authentication. Top row: (left) PCA-LDA scores plot using second-derivative whole spectrum
and (right) PLS-LDA scores plot using 2nd-derivative whole spectrum. Bottom row: (left) PCA-LDA
scores plot using second-derivative fingerprint region and (right) PLS-LDA scores plot using second-
derivative fingerprint region. Black points represent Maltese pork samples and red points represent
non-Maltese pork samples.

Across all preprocessing methods, the root mean square error of cross-validation
(RMSE LOO) values were consistently higher than the corresponding training and excluded-
sample errors. LOO-CV generally yields higher RMSE than external test sets because
each sample is predicted by a model trained without it, providing a stricter estimate of
generalization error [21]. In contrast, holdout partitions can underestimate the error if test
samples remain correlated with the training set [21]. Moreover, the high overlap between
training folds in LOO increases the variance in error estimates, inflating RMSE compared
with independent validation [20].



Foods 2025, 14, 3510 16 of 26

Table 4. PLSR regression performance.

(a) Whole Spectrum

Pre-Processing
Method R2 LV RMSE Train RMSE LOO RMSE

Excluded

1st Derivative 0.993 13 0.039 0.604 0.081
2nd Derivative 0.988 7 0.050 0.611 0.076

Deresolve 0.957 15 0.096 0.591 0.101
Detrend 0.964 15 0.089 0.619 0.115

Median Filter 0.959 15 0.094 0.586 0.104
MSC 0.919 14 0.132 0.620 0.154
OSC 0.962 14 0.090 0.581 0.103

Quantile Norm. 0.859 10 0.173 0.622 0.316
Raw 0.960 15 0.094 0.591 0.103
SNV 0.932 15 0.121 0.609 0.155

SNV + Detrend 0.885 10 0.157 0.603 0.185

(b) Fingerprint spectrum

Pre-Processing
Method R2 LV RMSE Train RMSE LOO RMSE

Excluded

1st Derivative 0.970 10 0.080 0.611 0.110
2nd Derivative 0.996 12 0.029 0.594 0.083

Deresolve 0.956 15 0.098 0.574 0.117
Detrend 0.964 15 0.088 0.598 0.127

Median Filter 0.964 15 0.089 0.577 0.141
MSC 0.910 13 0.139 0.620 0.174
OSC 0.965 15 0.087 0.572 0.129

Quantile Norm. 0.925 13 0.127 0.638 0.188
Raw 0.960 15 0.093 0.581 0.116
SNV 0.912 13 0.137 0.612 0.179

SNV + Detrend 0.906 12 0.142 0.603 0.180

The β-regression coefficient and Variable Importance in Projection (VIP) plots for the
whole spectrum and fingerprint region revealed distinct regions contributing most strongly
to the PLSR models (Figure 6 and Figures S11–S13). In the whole spectrum, the regression
coefficients showed distributed contributions across the mid-infrared range, with higher
weights observed in the lipid-associated CH stretching region (~3000–2800 cm−1) and the
protein-related Amide I and II bands (~1700–1500 cm−1). The VIP plot highlighted sharp
peaks above the threshold (VIP > 1) in these same regions, indicating their importance
for discrimination. In the fingerprint region, both regression coefficients and VIP scores
emphasized bands associated with protein secondary structures (Amide I and II) and
carbohydrate/lipid vibrations in the 1200–900 cm−1 range. These findings suggest that the
fingerprint region provided more localized discriminative information compared to the
broader distribution observed in the whole spectrum.

3.6. Support Vector Machine Regression (SVMR) Modeling

Support Vector Machine Regression (SVMR) models were developed for both the
whole FTIR spectra and the fingerprint region under different preprocessing conditions
(Table 5). In general, the models showed an extremely high predictive performance, with R2

values exceeding 0.97 across all methods and reaching 0.9995–0.9996 for most preprocessing
strategies. The 1st and 2nd derivative methods consistently provided the lowest training
errors (RMSE Train ≈ 0.009–0.010) and strong generalization, with excluded-sample errors
as low as 0.081 in the fingerprint region. Conversely, MSC, SNV, and quantile normalization
yielded higher cross-validation errors (RMSE LOO > 0.15) and larger excluded-sample
deviations (>0.18), indicating reduced robustness despite excellent calibration fits. The OSC
pre-processed models showed a stable performance, particularly in the fingerprint region,
where RMSE Excluded was as low as 0.104.
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Figure 6. Partial Least Squares Regression (PLSR) regression coefficients and Variable Importance
in Projection (VIP) profiles for Maltese and non-Maltese pork samples based on ATR-FTIR spectra.
(top panels) correspond to the whole spectral range (4000–650 cm−1) and (bottom panels) to the
fingerprint region (1800–850 cm−1). The regression coefficient plots indicate the relative contribution
and direction of each wavenumber toward class prediction, while the VIP score plots highlight
the most influential spectral variables (VIP > 1). Key discriminative bands are observed around
1650 cm−1 (Amide I), 1540 cm−1 (Amide II), 1200–1000 cm−1 (carbohydrate/phosphate vibrations),
and 2950–2850 cm−1 (CH2/CH3 lipid stretching), confirming that protein, lipid, and phospholipid
structures drive the differentiation between pork origins.



Foods 2025, 14, 3510 18 of 26

Table 5. SVMR regression performance.

(a) Whole Spectrum

Pre-Processing Method R2 RMSE Train RMSE LOO RMSE Excluded

1st Derivative 0.9996 0.0096 0.104 0.112
2nd Derivative 0.9996 0.0097 0.089 0.081

Deresolve 0.9754 0.0730 0.118 0.123
Detrend 0.9996 0.0097 0.138 0.176

Median Filter 0.9759 0.0723 0.119 0.119
MSC 0.9996 0.0098 0.171 0.213
OSC 0.9996 0.0096 0.117 0.116

Quantile Norm. 0.9996 0.0095 0.159 0.202
Raw 0.9754 0.0729 0.118 0.098
SNV 0.9996 0.0097 0.179 0.209

SNV + Detrend 0.9996 0.0098 0.147 0.164

(b) Fingerprint spectrum

Pre-Processing Method R2 RMSE Train RMSE LOO RMSE Excluded

1st Derivative 0.9996 0.0096 0.109 0.129
2nd Derivative 0.9996 0.0094 0.095 0.081

Deresolve 0.9741 0.0745 0.129 0.133
Detrend 0.9697 0.0802 0.168 0.183

Median Filter 0.9747 0.0742 0.127 0.147
MSC 0.9995 0.0098 0.171 0.180
OSC 0.9798 0.0658 0.123 0.104

Quantile Norm. 0.9996 0.0097 0.161 0.264
Raw 0.9748 0.0740 0.128 0.176
SNV 0.9996 0.0098 0.177 0.194

SNV + Detrend 0.9996 0.0098 0.140 0.188

Feature importance analysis of the SVMR models identified the spectral variables
contributing most strongly to the prediction (represented by the 1st derivative in Figure 7
whilst the remaining transformations are presented in Figure S14). For the whole spectrum
(top panel), the most influential features were located in the lower wavenumber region
around 840–850 cm−1, with additional contributions spanning 3000–3100 cm−1. In the
fingerprint region (bottom panel), the most important wavenumbers were also concentrated
in the 850–870 cm−1 range, along with clear contributions from the protein Amide I–II
region (1640–1650 cm−1) and several bands around 1100 cm−1 and 1500–1600 cm−1. These
findings indicate that SVMR placed a higher weight on fine-scale vibrational features within
the fingerprint region compared to the broader distribution observed in the full spectrum.

3.7. Artificial Neural Network (ANN) Modeling

Artificial Neural Network (ANN) models were developed on all spectral transfor-
mations to assess their capacity for pork authentication (Table 6). Training accuracies
were generally high, with several preprocessing methods achieving near-perfect perfor-
mance. The 2nd derivative model achieved the strongest training performance (Accu-
racy = 1.000, AUC = 1.000), followed by SNV (Accuracy = 0.988, AUC = 0.999) and OSC
(Accuracy = 0.976, AUC = 0.998). In contrast, MSC and detrend methods yielded lower cal-
ibration accuracies (<0.91) and higher misclassification rates (>9%). Validation on excluded
samples showed more variability. The OSC (Accuracy = 0.965, AUC = 0.996) and Median
Filter (Accuracy = 0.947, AUC = 0.999) models maintained high predictive accuracy with
relatively low misclassification rates (<6%). Conversely, raw and deresolve preprocessing
performed less effectively, with excluded accuracies around 0.77 and misclassification rates
exceeding 22%. These results demonstrate that derivative-based, OSC, and median-filter
preprocessing provided the most robust ANN models, while simple or normalization-only
approaches were less effective.
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Figure 7. SVMR feature importance (Top 30 variables) for the 1st derivative spectra. (Top panel):
whole spectrum; (bottom panel): fingerprint region. The most discriminative variables were observed
around 840–870 cm−1, with additional contributions in the Amide I region (1640–1650 cm−1) and
polysaccharide/phospholipid bands near 1100 cm−1, highlighting the biochemical basis for model
discrimination.

Table 6. ANN performance.

(a) Training Set

Pre-Processing Accuracy Precision Recall Specificity F1 Score Misclass.
(%) Entropy AUC

1st Derivative 0.976 0.975 0.991 0.943 0.983 2.37 0.123 0.998
2nd Derivative 1.000 1.000 1.000 1.000 1.000 0.00 0.098 1.000

Deresolve 0.970 0.983 0.974 0.962 0.978 2.96 0.097 0.997
Detrend 0.905 0.903 0.966 0.774 0.933 9.47 0.333 0.973

Median Filter 0.964 0.974 0.974 0.943 0.974 3.55 0.097 0.996
MSC 0.858 0.890 0.905 0.755 0.897 14.2 0.323 0.932
OSC 0.976 1.000 0.966 1.000 0.982 2.37 0.071 0.998

Quantile Norm. 0.905 0.955 0.905 0.906 0.929 9.47 0.324 0.946
Raw 0.964 0.974 0.974 0.943 0.974 3.55 0.101 0.996
SNV 0.988 0.991 0.991 0.981 0.991 1.18 0.081 0.999

SNV + Detrend 0.941 0.982 0.931 0.962 0.956 5.92 0.205 0.989

(b) Excluded validation set

Pre-Processing Accuracy Precision Recall Specificity F1 Score Misclass.
(%) Entropy AUC

1st Derivative 0.935 0.905 0.974 0.778 0.938 8.77 0.230 0.962
2nd Derivative 0.930 0.907 1.000 0.778 0.951 7.02 0.296 0.944

Deresolve 0.772 0.906 0.744 0.833 0.817 22.8 0.388 0.919
Detrend 0.877 0.881 0.949 0.722 0.914 12.3 0.366 0.942

Median Filter 0.947 0.929 1.000 0.833 0.963 5.26 0.118 0.999
MSC 0.876 1.000 0.872 1.000 0.932 8.77 0.209 0.969
OSC 0.965 0.974 0.944 0.944 0.974 3.51 0.092 0.996

Quantile Norm. 0.882 0.946 0.897 0.889 0.921 10.5 0.256 0.969
Raw 0.772 0.882 0.769 0.778 0.822 22.8 0.323 0.927
SNV 0.895 0.923 0.923 0.833 0.923 10.5 0.375 0.899

SNV + Detrend 0.947 0.974 0.949 0.944 0.961 5.26 0.155 0.994
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The region of importance (ROI) mapping represented in Figure 8 by a normalized
spectrum and Figure S17 obtained from the ANN models highlighted the spectral intervals
contributing most strongly to the classification between Maltese and non-Maltese pork.
The confusion matrices are also represented in Figure S15, together with the Receiver
Operating Characteristic (ROC) curves presented in Figure S16. The fingerprint region
(~900–1800 cm−1) showed the highest concentration of discriminative features, particularly
within the protein Amide I–II bands (~1650 and ~1550 cm−1) and carbohydrate/lipid-
associated vibrations between 1000 and 1200 cm−1. Additional peaks of relevance were
observed around the lipid CH stretching bands (2800–3000 cm−1), while regions above
3500 cm−1 contributed minimally. These findings confirm that the ANN relied on chemi-
cally meaningful features within the mid-infrared spectrum for accurate discrimination.

Figure 8. Region of Importance (ROI) mapping for the ANN model applied to pork authentication.
The black dashed line represents a normalized mean spectrum, while the red trace indicates nor-
malized ROI importance across the wavenumber axis. Red parts of the spectrum are the regions
excluded; grey areas are the regions included in the analysis.

4. Discussion
The ATR-FTIR spectra revealed clear biochemical differences between Maltese and

non-Maltese pork across protein-, lipid-, ester-, and carbohydrate-associated regions previ-
ously identified by other authors [3,4,6]. In the high wavenumber region, the broad Amide
A band (~3290 cm−1), corresponding to the N–H stretching of proteins with O–H contribu-
tions from polysaccharides, appeared slightly more intense in Maltese pork; however, due
to the possible water overlap, this peak was excluded from the analysis. In the lipid region
(3000–2800 cm−1), Maltese pork displayed more pronounced CH3 and CH2 stretching
vibrations. Both the CH3 asymmetric stretching (~2956 cm−1) and the CH2 asymmetric
stretching (~2925 cm−1) bands were stronger, as was the CH2/CH3 symmetric stretching
region (~2872–2853 cm−1). These peaks reflect intramuscular lipids, phospholipids, and
neutral lipids, indicating that Maltese pork exhibits relatively stronger methyl and methy-
lene vibrational contributions [3–5,7]. In contrast, non-Maltese pork exhibited stronger
carbonyl and protein-related absorptions. The C=O stretching vibration at ~1715 cm−1,
associated with fatty acids and aromatic esters, was more defined in non-Maltese sam-
ples, suggesting higher levels of free fatty acids or oxidation products [3,4,9]. Similarly,
the Amide I (~1655 cm−1) and Amide II (~1540 cm−1) bands were more intense in non-
Maltese pork, indicating higher contributions from structural proteins or differences in
secondary structures [3,6,7]. This contrasts with the higher Amide A intensity observed in
Maltese pork, suggesting possible differences in protein conformations or hydration states
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between the two groups [3]. Further differences were evident in the fingerprint region
(1500–900 cm−1). Non-Maltese pork exhibited stronger CH2 bending vibrations around
~1465 cm−1, together with more intense signals in the ~1412–1418 cm−1 region associated
with cis-olefinic rocking and C–N stretching. The COO− symmetric stretching band at
~1392 cm−1, a marker for fatty acid composition, was also stronger in non-Maltese pork.
These absorptions are consistent with a greater lipid bending intensity, higher fatty acid
unsaturation, and compositional differences in fatty acid profiles [3,4,7].

In contrast, Maltese pork showed more pronounced signals in the Amide III region
(~1315–1230 cm−1), which also overlaps with PO2

− asymmetric stretching from phospho-
lipids and nucleic acids [3,4,7]. Additional differences were observed in the 1170–1150 cm−1

region, corresponding to the C–O stretching of serine, threonine, and tyrosine residues, and
in the 1080–1030 cm−1 range, assigned to PO2

− symmetric stretching and C–O vibrations
of carbohydrates and glycogen. These stronger absorptions in Maltese pork indicate a
higher contribution from structural proteins, phospholipids, and carbohydrate-related
biomolecules [3,7]. Taken together, these spectral observations suggest that Maltese pork is
distinguished by stronger Amide A, Amide III, and phosphate/carbohydrate-associated
vibrations, alongside pronounced CH2/CH3 stretching bands. Non-Maltese pork, on the
other hand, is characterized by stronger Amide I–II absorptions, more defined carbonyl
stretching, and greater lipid bending and fatty acid-associated peaks [7]. These composi-
tional differences are likely rooted in production practices: Maltese pork, typically derived
from small-scale systems with balanced feeding and shorter supply chains, shows stronger
signatures of structural proteins and phospholipids, whereas non-Maltese pork, associated
with intensive farming and energy-dense diets, exhibits higher levels of free fatty acids,
lipid unsaturation, and protein signals linked to leaner carcass development.

Chemometric modeling confirmed that these spectral features formed the basis for
robust classification. The application of Savitzky–Golay derivatives improved the resolu-
tion of overlapping peaks in the amide and lipid regions, allowing subtle yet systematic
differences between the groups to be emphasized. The superior performance of second-
derivative preprocessing in PCA clustering mirrors earlier findings in meat authenticity
studies, where derivative treatments consistently enhanced separation [6,8,15]. Supervised
classifiers further improved the classification accuracy. PLS-LDA achieved 100% accuracy
across preprocessing methods, outperforming PCA-LDA, which does not explicitly op-
timize for class-related variance. This agrees with earlier studies showing that PLS-DA
and SVM consistently outperform PCA-based models in meat species and origin authenti-
cation [6,15]. Although whole-spectrum models achieved high accuracy, the fingerprint
region (1800–900 cm−1) emerged as the most chemically meaningful. It captures the amide
bands, lipid bending modes, and phosphate/carbohydrate absorptions that directly reflect
protein-to-lipid ratios and cellular composition. This reinforces the literature consensus that
the fingerprint region provides the richest biochemical information for species and origin
discrimination [6–8]. Nevertheless, second derivative models showed increased outlier
sensitivity, suggesting that complementary preprocessing strategies such as detrend or
OSC may offer a more stable balance between accuracy and robustness. These observations
are summarized in Table 7, which compares the different preprocessing techniques applied
in this study, highlighting their relative advantages, limitations, and impact on the spectral
resolution and model performance.

Regression modeling further highlighted the discriminatory power of the fingerprint
region. PLSR models performed best with derivative preprocessing, though inflated leave-
one-out (LOO) errors reflected the known limitations of this validation strategy in small
datasets. Nonlinear regression approaches such as SVMR provided stronger predictive
robustness, capturing subtle biochemical patterns beyond the linear structure of PLSR. Fea-
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ture importance from SVMR and region of importance from ANN consistently highlighted
Amide I (~1650 cm−1), CH2/CH3 bending (~1465 cm−1), and carbohydrate/phosphate
bands (~1117–1031 cm−1) as the most discriminative, fully matching the biochemical as-
signments of the spectra. ANN models also performed strongly when derivative or OSC
preprocessing was applied, corroborating recent evidence that deep learning approaches
enhance classification power in FTIR–chemometric workflows [6,8,15].

Table 7. Comparison of spectral preprocessing techniques and their impact on FTIR–chemometric
analysis [22–25].

Preprocessing Method Main Purpose Advantages Observed Limitations

1st Derivative Enhances resolution, reduces
baseline

Improved clustering in PCA, high
accuracy in PLS-LDA and PLSR Sensitive to noise if not smoothed

2nd Derivative Resolves overlapping bands,
emphasizes subtle features

Best performance in PCA (PC1 >
95% variance), highest PLSR and
ANN accuracy, improved
separation in SIMCA

More outliers, higher sensitivity

Deresolve Derivative + smoothing Perfect SIMCA classification
(100%), balanced performance

Slightly lower variance explained
compared to derivatives

Detrend Removes baseline shifts Stable classification in SIMCA and
PLSR, fewer outliers Slightly lower variance capture

Median Filter Reduces high-frequency noise Robust ANN performance,
moderate PCA variance explained May over-smooth subtle peaks

MSC Corrects scatter effects Stable results in SIMCA and
regression

Higher excluded RMSE in some
models

OSC Removes variance unrelated to
class

Robust ANN and SVMR
performance, balanced
classification

May overcorrect in small datasets

SNV Corrects scatter and pathlength High accuracy in ANN and
SIMCA

Moderate variance explained in
PCA

SNV + Detrend Combination of scaling + baseline
correction

Balanced reproducibility, fewer
misclassifications

Not as strong as derivatives for
PCA

Quantile Normalization Standardizes distributions Useful for comparability Lowest variance explained,
weaker classification

Raw (no preprocessing) Baseline reference Still yielded strong SIMCA
classification (100%)

Less robust compared to
derivative-based preprocessing

These results confirm that Maltese and non-Maltese pork can be reliably differenti-
ated based on their FTIR fingerprints. Maltese pork is defined by stronger protein- and
phosphate-associated absorptions, while non-Maltese pork is characterized by more pro-
nounced lipid- and ester-associated signals. When coupled with derivative preprocessing
and supervised classifiers, ATR-FTIR provides a rapid, non-destructive, and cost-effective
strategy for pork origin authentication. Spectral acquisition required approximately 3 min
per sample, with negligible reagent consumption, thereby offering a markedly more eco-
nomical alternative to conventional molecular or proteomic approaches. DNA-based
authentication (e.g., PCR or qPCR) typically entails 2–4 h of sample preparation, ampli-
fication, and analysis, in addition to recurring expenses for extraction kits and enzymes,
while proteomic or mass-spectrometric methods frequently exceed these temporal and fi-
nancial requirements [26]. Relative to such methods, ATR-FTIR reduces per-sample reagent
and consumable costs by an estimated ≥70% and lowers total analytical expenditure to
roughly 5–10% of that associated with a conventional workflow [27]. These findings are
concordant with previous demonstrations of the robustness of FTIR–chemometric strategies
for meat traceability and halal verification [6,7,14,26,27] and, together with reports of the
successful deployment of portable ATR-FTIR instrumentation, highlight the feasibility of
implementing this approach for rapid, on-site regulatory and industrial monitoring.
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5. Conclusions
This study demonstrated the successful application of ATR-FTIR spectroscopy coupled

with advanced chemometric and machine learning approaches for the authentication
of Maltese versus non-Maltese pork. A comprehensive evaluation of classification and
regression strategies revealed that data preprocessing plays a pivotal role in extracting
chemically meaningful information from complex FTIR spectra. Derivative transformations,
particularly the Savitzky–Golay first and second derivatives, consistently enhanced spectral
resolution and improved model robustness across all workflows.

Linear models such as PCA-LDA, SIMCA, and PLSR provided high levels of accuracy
and interpretability, with the fingerprint region (1800–600 cm−1) emerging as the most
discriminative spectral domain due to its rich representation of proteins, lipids, and nucleic
acids. However, these methods were more sensitive to sample variability and exhibited
inflated errors under stringent cross-validation. Nonlinear approaches, especially Support
Vector Machine Regression (SVMR) and Artificial Neural Networks (ANNs), delivered a
superior predictive performance, with accuracies exceeding 0.99 and lower misclassification
rates under external validation. The ANN models, when combined with appropriate
preprocessing (2nd derivative, OSC, or median filtering), provided the most powerful
classification framework, highlighting the capacity of deep learning to capture subtle,
nonlinear spectral features.

Collectively, these findings confirm that FTIR spectroscopy coupled with chemomet-
rics, and machine learning provides a rapid, cost-effective, and non-destructive tool for
meat authenticity assessments. The strong performance of nonlinear models underscores
their potential for real-world deployment in quality control and regulatory enforcement.
Importantly, the results also emphasize that the careful choice of the preprocessing and
validation strategy is essential to prevent overfitting and to ensure model generalizability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/foods14203510/s1, Figure S1. Representative ATR-FTIR spectra
of Maltese pork (black) and non-Maltese pork (red) after applying different spectral transformations.
Rows correspond to preprocessing methods: Raw, 1st Derivative, 2nd Derivative, Deresolve, Detrend,
Median Filter, Multiplicative Scatter Correction (MSC), Orthogonal Signal Correction (OSC), Quantile
Normalization, Standard Normal Variate (SNV), and SNV + Detrend. Figure S2. PCA score plots
of the full spectrum (4000–400 cm−1) for all spectral transformations. Figure S3. PCA loading plots
of the full spectrum (4000–400 cm−1) for all spectral transformations. Figure S4. PCA score plots
of the fingerprint region (1800–850 cm−1) for all spectral transformations. Figure S5. PCA loading
plots of the fingerprint region (1800–850 cm−1) for all spectral transformations. Figure S6. Outlier
analysis using Hotelling’s T2 plots for the whole spectrum (right) and fingerprint region (left) across
all spectral transformations. Figure S7. Q-residual plots for the whole spectrum (right) and fingerprint
region (left) across all spectral transformations. Figure S8. Coomans plots (Q-residuals vs. Hotelling’s
T2) for all spectral transformations, comparing the whole spectrum (right) and the fingerprint region
(left). Figure S9. SIMCA classification performance metrics (accuracy and specificity) comparing
the whole spectrum and fingerprint region across different spectral transformations. Figure S10.
PLS-DA score plots for the whole spectrum (right) and fingerprint region (left) across all spectral
transformations. Figure S11. β-regression coefficient plots of the full spectrum (4000–400 cm−1)
across all spectral transformations. Figure S12. β-regression coefficient plots of the fingerprint region
across all spectral transformations. Figure S13. Variable Importance in Projection (VIP) plots of the
fingerprint region for all spectral transformations, contrasting Maltese (black) and non-Maltese (red)
pork. Figure S14. Top 30 feature importance plots for the whole spectrum (left) and fingerprint
region (right) across all spectral transformations. Figure S15. Confusion matrices for classification of
Maltese and non-Maltese pork using ANN models with different preprocessing methods. Figure S16.
Receiver Operating Characteristic (ROC) curves with area-under-the-curve (AUC) values for ANN
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classification of Maltese vs. non-Maltese pork across preprocessing methods. Figure S17. Region
of Importance (ROI) plots showing the most influential wavenumber regions for discrimination
between Maltese and non-Maltese pork.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Definition
ANN Artificial Neural Network
ATR Attenuated Total Reflectance
AUC Area Under the Curve
ELISA Enzyme-Linked Immunosorbent Assay
FTIR Fourier Transform Infrared Spectroscopy
IR Infrared
KIM Koperattiva Industijali tal-Majjal
LDA Linear Discriminant Analysis
LOOCV (or LOO) Leave-One-Out Cross-Validation
LV Latent Variable
MIR Mid-Infrared
MLP Multilayer Perceptron
MSC Multiplicative Scatter Correction
OSC Orthogonal Signal Correction
PCA Principal Component Analysis
PCA-LDA Principal Component Analysis–Linear Discriminant Analysis
PCR Polymerase Chain Reaction
PLS Partial Least Squares
PLS-DA Partial Least Squares–Discriminant Analysis
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PLS-LDA Partial Least Squares–Linear Discriminant Analysis
PLSR Partial Least Squares Regression
RMSE Root Mean Square Error
ROC Receiver Operating Characteristic
SIMCA Soft Independent Modeling of Class Analogy
SNV Standard Normal Variate
SVM Support Vector Machine
SVMR Support Vector Machine Regression
VIP Variable Importance in Projection
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